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1. INTRODUCTION 

One of the banes of the modern society is the Automotive pollution because the exhaust emissions from them degrade the 

environment. The emissions an internal combustion (I.C.) engine delivers have adverse affect on human health as well as the 

plant kingdom. The increase in the number of vehicles has caused a voluminous increase in the pollutants such as 

hydrocarbons (HC), nitrogen-oxides (NOx), Carbon monoxide (CO) and particulate matter (PM) at an alarming rate. 

Consistent research has caused a drastic change of technology which has converted the conventional I.C. engines into 

electronically controlled vehicles. Recent development in computer technology and sensor systems has made it possible to 

achieve better control over the pollutants. Yet in ideal sense, the concept of green vehicle is a dream of the future because the 

thrust of the research is towards the development of intelligent vehicle with decision making capability. The application of 

artificial neural network in I.C. engine systems is one such direction, as it has various capabilities such as self learning, 

parallel & distributed processing and very large scale integration (VLSI) system implementation. Due to such attributes, 

Artificial Neural Network (ANN) has gained the attention of the researchers in the recent times for application in IC engine 

technology. The use of ANN makes it possible to predict these emissions quite close to their actual values and hence better 

control may be achieved through a feedback loop in the hardware.  

Artificial Neural Network (ANN) is a general term which represents the model of human brain and its processing, developed 

by soft computing practitioners. Among its various types, one of the most popular techniques followed is back-propagation 

neural network (BPNN). This neural network is fed with example sets of data as inputs obtained from practical results, for 

example, from the data obtained during experiments in a diesel engine test rig by using various settings of the engine and 

observing the HC emission results at the exhaust. It is required to iterate the algorithm of BPNN repeatedly with the same 

sets of data so that the network produces calculated results of emission by using its algorithm, which is called predicted 

results of emission. These predicted results will be different, naturally to some extent, from the actual result of emission 

during the experiment and thus the calculation of RMS error may be done. This error is used during the iterations for 

improving the results of prediction and the name of back propagation comes from this fact. 

The research aims at the study of the architecture and algorithm for the Back Propagation Neural Network (BPNN) and its 

features, to plan and strategise the data collected from a stationary diesel engine with sensors for subsequent use in BPNN 

and to examine the applicability of BPNN architecture of ANN in predicting the HC emissions of I.C. engines.           

 

2. PREVIOUS RESEARCH  

A survey is undertaken through the papers published by the research workers on the applicability of ANN to successfully 

predict the emissions from I.C. engine: 

 Karakitsios et.al (2005) attempt was based on vehicle speed and vehicle’s category traffic flow as inputs, to develop NN 

model and it with back propagation algorithm to calculate the emissions of CO, C6H6, NOx and PM10 and the 

corresponding error (calculated v/s observed values) was lower than 3% in a complex busy avenue environment[1]. 

Obodeh et.al (2009) experimented with a light duty Nissan diesel engine test rig to measure engine operating parameters and 

its tail pipe emissions. Levenberg-Marquardt (LM) algorithm was used to train the ANN on experimental data using in 

different architectures of back propagation to predict the oxides of nitrogen (NOx) emissions under various operating 
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variables. For pre-specified engine speeds and loads with LM algorithm, absolute percentage errors were found between 

0.68% to 3.34%[2]. 

M.Ali Akcayol et. al (2005) attempted to improve cold start performance of catalytic converters for HC and CO emissions 

with the help of a burner heated catalyst tested in a four stroke spark ignition engine using back propagation learning 

algorithms of ANN for prediction of catalyst temperature, CO and HC emissions. Taking the training dataset from the 

experiment, it was found that the deviation coefficients for standard and heated catalyst temperature are less than 4.925%,and 

1.602%, the same for standard and heated catalyst HC emissions are less than 4.798% and 4.926% and that for standard and 

heated catalyst CO emissions are less than 4.82% and 4.938% respectively[3]. 

Shivakumar et.al (2010) used blends of Hunge oil with diesel at various compression ratios as fuel to predict the performance 

and emission characteristics of a single cylinder, four stroke, and water cooled compression ignition engine using Artificial 

neural networks (ANN’s). The ANN was trained with back propagation algorithm using compression ratio, blend percentage 

and percentage load as input variables whereas performance parameters together with engine exhaust emissions were used as 

output variables. ANN showed good convergence between predicted and experimental values for various performance 

parameters and emissions with mean squared error closed to 1 and mean relative error less 9%[4].  

 

3. RESEARCH METHOD 

The entire experiment was carried out at the I.C Engine laboratory in a computerized single cylinder, four stroke, multi-fuel, 

variable compression ratio (VCR) engine as shown in Fig.1. The fuel used for the experiment was diesel. The setup consists 

of single cylinder, four stroke, multi-fuel, research engine (specified in Table 1) connected to eddy current type dynamometer 

for loading. The operation mode of the engine can be changed from Diesel to Petrol or from Petrol to Diesel with some 

necessary changes. In both the modes, the compression ratio can be varied without stopping the engine and without altering 

the combustion chamber geometry.  

 
Fig.1 The engine test rig 

 

Table-1 Engine specifications 

       Stroke 110 mm 

       Bore 87.5 mm 

      Capacity 661 cc. 

 

 

Diesel mode 

Power 3.5 KW 

Speed 1500 rpm 

CR range 12:1-18:1 

Injection variation 0-25Deg BTDC 

 

 

Petrol mode 

Power 4.5 KW @ 1800 rpm 

Speed range 1200-1800 rpm 

CR range 6:1-10:1 

Spark variation 0-70 deg BTDC 

 

Fuel tank 

Capacity 15 lit 

Type Duel compartment, with fuel metering pipe of glass 
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Data on exhaust HC emission were collected by varying the controllable parameters of the engine among which are 

Compression Ratio (CR), Injection Timing (IT) and Load (W) on the engine are crucial. Also the parameters such as 

observed load (WOBS), water inlet and outlet temperature to and from the engine respectively (T1 & T2) engine exhaust 

temperature(T5) from calorimeter peak cylinder pressure(P.P),Crank angle corresponding to peak pressure(θpeak), indicated 

air pressure in mm of water column in the calorimeter(Air pr.) and rate of fuel into the cylinder(R.F.I) were recorded. 

In order to establish the domain of the experiment, we may consider each parameter or factor at several levels. For example, 

if we have three factors and if each factor has three levels, then the total number of experiments or observations or treatment 

conditions (TC) would be 3x3x3 = 27. Similarly, we may use formula for calculating the total number of experiments as 

given below, if all the factors have the same number of levels: 

TC = lf   

where, l = Number of levels 

f = number of factors 

Following the above concept, data for sixty three experiments by making CR (3 levels), IT (3 levels) and  

W (7 levels), i.e. TC = 3 x 3 x 7 = 63. 

3(A). Artificial Neural Networks Modelling 

The behaviour of a neuron can be captured by a simple model shown in Fig.2 below which bears direct analogy to the actual 

constituents of a biological neuron and hence it is called artificial neuron. 

 
.. 

 

X1, X2 and X3 = Inputs, W1, W2 and W3 = Synaptic weights, T = Threshold  

Transfer function: Examples are Sigmoid, Hyperbolic tangent etc. 

 

                                                          =summing junction  

Information Processing 

Weighted sum (V) = W1.X1 + W2.X2 + W3.X3 – T, for i=1, 3, j = 1, 3  

Now the neuron fires only when V≥0 and gives the output, generally using Sigmoid function (shown below); otherwise the 

output = 0.0 

               Output (Y) =                                                                                (1) 

3. (B) Back Propagation Neural Network (BPNN) Architecture 

This type of network shown in Fig.3 is sometimes called multilayer perception (MLP) because of its similarity to perception 

networks with more than one layer.  

 
Fig3. BPNN Architecture 
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The network consists of a number of layers called the input, hidden and output layers. The hidden and output layers contain a 

number of neurons or processing elements which are connected by links or connections to show the flow direction of signals 

and also to represent weight or strength of their respective connections. In an MLP of the back propagation type, the 

connections are first initialized by a set of uniformly distributed random numbers between 0 and 1. 

The calculations are made in feed forward manner until back propagation of errors is done.  

Following the processing in a single neuron (Fig. 2), outputs from the neurons of a certain layer (eq. 1) are given as inputs to 

the neurons of the next layer. Finally the output layer gives the calculated output (YK) from the BPNN and the back 

propagation begins on the basis of prediction error (eK).  

The flow chart shown in Fig. 3 summarizes the operation of BPNN: 

 
Fig.3 Flow chart of BPNN 

Get the complete database 

Set the strategies containing the inputs to 

train the BPNN 

Set the value of Mean Sq. Error (MSE) i.e 

MS(Actual result- Predicted or Calculated result) 

Initialize weights 

Start training the BPNN with a 

particular strategy 

Stopping criterion 

achieved? 

Test the BPNN with that strategy 

Yes 

Training and Testing set 

converging? 

No Yes 

Compare actual and predicted results 

Change strategy Accept 

No 

Update weight 
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The errors are: 

   
                                                                                                                                                             (2) 

 

 

 (3) 

TR = training set, TS = testing set, NTR = no. of training set, NTS = no. of testing set, 

C = no. of output nodes. 

The iterations may be stopped for any of the following reasons:  

Either after a certain number of iterations 

Or after a desired precision level is achieved 

Or the RMS Testing error begins to increase (called Over learning/Over training) shown next[5]. 

3. (C) Strategic Analysis 

The entire set of 63 data is divided into 42 nos. of training set and 21 nos. of testing set. The performance of the various input 

parameters for predicting the output (HC emission from the engine) are studied with the help of BPNN program. For this 

purpose, systemic analysis has been adopted by grouping the input parameters, which are being called as “strategies” listed in 

table 2 below. 

Table 2:  Strategies for analysing BPNN performance 

STRATEGY INPUT PARMETERS OUTPUT 

OBSERVED 

REMARK 

I CR, IT, WOBS  HC 

 

Basic strategy is 

Strategy-I, which is 

followed by gradual 

addition and deletion of 

other parameters 

obtained from sensors 

signals. 

II CR, IT, WOBS, PP 

III CR, IT, WOBS, θpeak 

IV CR, IT, WOBS, PP, θpeak 

V CR, IT, WOBS, PP, θpeak, R.F.I 

VI CR, IT, WOBS, PP, θpeak, Air pr., R.F.I 

VII CR, IT, WOBS, T1, T2, T5, PP, θpeak 

 

4. HEURISTIC OPTMIZATION OF BPNN AND ITS PARAMETERS 

(a)  Firstly, the architecture of each strategy is optimized by changing the number of neurons in the hidden layer, keeping 

learning rate and momentum parameter[6,7] fixed respectively at 0.5 and 0.7 (the range being 0.1-20 and 0.7-5 for L.R and 

M.P respectively)  to obtain a minimum mean squared error for the testing set of data or 25000 iterations, whichever occurs 

first 

(b) Secondly, the optimized architecture is further tested by varying the learning rate and momentum - parameter to further 

minimise the error for the testing set  

The optimized results are obtained by iterating the training and testing set with the program using back propagation 

algorithm.  

The following inputs are fed to the program: 

Learning Rate (LR), Momentum Parameter (MP), No. of layers (3), Architecture (input neurons, hidden neurons, output 

neurons), Iterations (25000), Display interval (5), and Desired mean squared error for testing data (MSETS = 0.001). 

 

5. RESULT OF ANALYSIS OF HC 

Best results compiled for HC emission are listed in Table 3.  

Table 3: Best result for HC 

Strategy Architecture L.R M.P Percent RMS Error Iteration 

TRAIN TEST 

III 4-10-1 1 0.9 3.942 7.389 24655 

 

The learning curves and scatter diagrams of predicted and observed results for HC emission are depicted from Fig. 5 and 6. 
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Fig.5 Learning curves for the heuristically best strategy III of HC 

 
Fig.6 Observed V/S Predicted results for HC at iteration 24655 for strategy III 

 

6. INFERENCE 

(i) It has been tested that the three basic controllable parameters compression ratio, observed    load and injection timing as 

inputs gives bad result. The minimum difference between observed and predicted results of training and testing set of data for 

25000 iterations amounts to 60.926ppm and 63.329ppm respectively.   

(ii) The inclusion of sensor signal feature along with the controllable parameters leads to over learning after a short number 

of iterations but strategy III by far gives the best result although the conversion rate is not as fast as shown in Table 3 and Fig 

5. The minimum difference between observed and predicted results of training and testing set of data for 25000 iterations 

amounts to 40.5178ppm and 50.152ppm for strategy III. Fig 5 indicates how close the set of predicted results are to the actual 

results obtained in practice (now in the experiment). 

(iii) Strategy V and VI leads to poorer results where the minimum difference between observed and predicted results of 

training and testing set of data for 25000 iterations are 68.934ppm and 70.897, 66.546ppm and 68.926 respectively but with 

strategy VII there is marked improvement in prediction results where minimum difference between observed and predicted 

results of training and testing set of data for 25000 iterations amounts to 62.3296ppm and 53.4105ppm respectively. 
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7. CONCLUSION 

As evident from the above analysis, strategy III gives the predicted value of emissions close to their observed values. 

Strategy IV comes closer to III. The temperature of water inlet and outlet to and from the engine respectively and engine 

exhaust temperature plays the most important role in emission prediction. It has been observed that the peak cylinder pressure 

and crank angle at peak pressure (θpeak) is a vital ingredient in NOX prediction whereas the inclusion of indicted air pressure 

(Air pr.) and rate of fuel input into the cylinder (R.F.I) as inputs to the BPNN lead to poorer results in emission prediction. 
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